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Abstract. We study the interaction between two and three magnetic impurities in a metallic 
host in which the mediating electrons are modelled by relativistic 'jellium'. We find the 
relativistic multi-site and multi-component generalisation of the RKKY interaction. In 
addition to the usual isotropic spin-spin interaction we find uniaxial and unidirectiorial 
contributions. We comment on the importance of these to the understanding of magnetic 
anisotropy of spin glasses. 

We shall study the interaction between magnetic impurities in a metallic host. The 
cases of (i) two and three magnetic impurities and (ii) two magnetic and a single 
non-magnetic impurity are investigated. The electrons which mediate these interactions 
will be modelled by an infinite non-interacting electron gas of appropriate density 
with a uniform, positively charged background (jellium). In that case the conventional 
coupling between the two magnetic impurities with moments pointing along the unit 
vectors fI  and f2 respectively at an asymptotically large separation R I , ,  is given by the 
well known Ruderman-Kittel-Kasuya-Yoshida (RKKY)  [ 1-31 formula. 

where k, is the Fermi momentum and V is a parameter that describes the interaction 
between the impurity and the electrons. The precise nature of V depends on how the 
impurities are modelled. 

As is well known, the above result has been derived within the framework of 
non-relativistic quantum mechanics. Elsewhere [4] we have used the Dirac equation to 
describe the conduction electrons and derived the relativistic generalisation of (1 ) .  As 
well as depending on the usual spatially isotropic 'spin-spin' term, on account of spin- 
orbit coupling effects, it is also a polynomial function of pseudo-dipolar and squared 
Dzyaloshinskii-Moriya type terms. Thus the anisotropy was shown to be uniaxial in 
form. Here we extend that work to the case of two non-equivalent magnetic impurities 
and find additional unidirectional terms. We also study the magnetic anisotropic 
effects arising from three impurity interactions and comment on the more interesting 
consequences of these results. 

While in non-relativistic quantum mechanics the exchange interaction is isotropic 
in spin space, in the Dirac theory the spin and orbital degrees of freedom are coupled. 
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This coupling is the main source of magneto-crystalline anisotropies in metals. Thus 
the relativistic RKKY interaction is of general interest because it features the simplest 
example of magnetic anisotropy. Moreover, it is of particular interest because it may 
make a significant contribution to the still mysterious anisotropies which characterise 
the low temperature behaviour of the spin glass state [ 5 ] .  

From the point of view of our present concern, the relevant description of the 
impurities is the corresponding spin-dependent potentials: v,(r) = u, (v ) I  + w,(r)a . 
where I, ay, a', and a' are the complete set of Pauli spin matrices. We wish to work 
to all orders in v,(i = 1, 2, 3,. . .) and hence we shall develop the theory in terms of the 
'on the energy shell' t-matrices 

where E is the kinetic energy of the incident electron, 1, m and o are the polar, 
azimuthal and spin magnetic quantum numbers respectively. Note that m and o refer 
to a common z axis at  both sites and that the matrix t(e) is non-diagonal in m and 
CT. The orbital parts of the potentials are taken to be spherically symmetric and hence 
the t(') are diagonal in 1. For orientation we note that in a non-relativistic theory for 
a local moment along z, t~~, , l ,o ,~l , l , , l ,o l  ( e )  = -6,,,,, 6,,,,tvl, 6,,,, (exp 2i61,0(e) - I ) /@&).  On 
the other hand in a fully relativistic theory ~~,l,l,o,~l,t,ll,ol is non-diagonal and its diagonal 
elements depend on both m and 0. Both of these effects are the consequences of the 
spin-orbit coupling and in the present framework they are the root causes of magnetic 
anisotropy. General features of this t-matrix and ways of calculating them have been 
discussed in [6] and [ 7 ] .  

Under the most general circumstances the quantities that we wish to calculate 
are the various contributions to the Grand Potential R that represent the interaction 
between 2, 3.. . . impurities. 

R = R, + p n ,  + C 6 R ,  + p R , , ,  + " ' 
i i j  i j k  

The dominant single particle contribution is given by 

R = - de f ( e  - ~ ) N ( E )  (3) 

where f ( e  - v )  is the Fermi function, v is the electron chemical potential and N is the 
appropriate integrated density of states. 

A powerful result of multiple scattering theory [7] is that for an  arbitrary number 
and arrangement of non-overlapping scatterers the integrated density of states is given 
by 

where  oil denotes the operation of taking the determinant of the matrix 0 with 
respect to the indices [, m, o and the site indices 1, 2, ...> and the matrices G -+ 
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where the Y/In(R) are the complex spherical harmonics for the angles which 
direction R, the C;ii:;,,711 are the corresponding Gaunt numbers 

and k: is the spherical Hankel function for the angular momentum label I,. 
we stress that equation (4) is a straightforward relativistic generalisation 
formula [8]. 

Using equations (4), ( 2 )  and (3) we find that 

6Q,, = - ( l /n)  1 de f ( e  - v )  log I I  - t lG12tZG,I 1 

specify the 

(6) 

For clarity 
of Lloyd's 

(7) 

where 1 .  . . I  means taking the determinant with respect to the indices I ,  m and (T only, 
the operation with respect to the site indices having been fully worked out. A similar 
analysis provides a more complicated expression for dQ,,,, the interaction between 
three sites. 

Although the exact formulae of the above form are easy to evaluate numerically, 
we shall study only their asymptotic forms for large separations between the impurities. 
In that limit GI, - l /R l l  and hence we may expand equation (7) in powers of G,j .  For 
two impurities and to lowest order in GI, we find 

where A denotes all three indices 1, m and 0. Similarly, for three impurities 

6Ql,, = ( l / n )  Im de f ( e  - v) s 

All explicit calculations which we shall report will have been evaluations of the 
above formulae by converting the energy integration into a sum over the usual Mat- 
subara frequencies and performing the sum numerically. 

To gain some insight into the workings of the formal expression in (8) let us (i) 
neglect the energy dependence of the t-matrices by replacing both by the real part of 
tiZ,A1 (eF), (ii) use the T = 0 K limit of f ( e  - v) = @(e - eF), (iii) take the non-relativistic 
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limit and (iv) retain only the leading term in l / R 1 2  . It is then straightforward to show 
that (81 reduces to 

x (2k ,R, ,~os2k ,R,~  - sin2kFRl,)/R;', (10) 

whose 'magnetic' contribution is the same as in equation ( I ) .  
In the non-relativistic derivation it is found that 6Ql, depends only on /Rl , l  because 

r,,,,!(e) is diagonal and independent of m. As a consequence of such m-dependence 
in the relativistic theory a number of new terms containing the 'direction' of R I , ,  
denoted by the unit vector k, , ,  arise. Equation (8) may be rewritten, following the 
same manipulations as in 141, as 

l1,.l1?.11, 

x [ ( R , ,  , 9*,)(/iI2 . 9**)]l11 [RI,  ' (i, x ~ , ) ] * " 2 [ ( R I 2  . i,)? - ( R 1 2  . $ ) * ] " 3  (1  1) 

wher,: the coefficient h,l,,t12,,73(SIl .i2) depends only on the relative orientation of s ,̂ and 
S I 2 ,  RI,, the scattering properties of the two impurities and sundry numerical factors. 
For two identical magnetic impurities n3 = 0 only and bt21,11~,o = u , , ~ , , ~ ~  of [4]. This is the 
general form of the relativistic RKKY interaction. 

Evidently, for s wave scattering I,,,;,, = 0 and hence no new term arises. An example 
of this case would be two magnetic impurities described by V ( P )  = J 6 ( r  - R ) i i . a  
where R is the position of the nucleus. Since we expect pseudo-dipolar terms. like 
(RI ,  $ , ) ( R I , .  i2), and Dzyaloshinskii- Moriya- (DM-) type terms, like R I ,  . (s*, x $), to 
arise only on account of the spin-orbit interaction, this is a satisfactory result as in the 
case of s states there is no  such interaction. 

Although equation (1 1) for two identical impurities contains terms like R I ,  . (9, x t2) 
i t  differs from the usual DM terms in that here only even powers of R I ? .  (s?, x &) enter. 
This is a natural consequence of the symmetry in the present problem and hence i t  is also 
a very satisfactory feature of our formula. Evidently the magnetic anisotropy described 
by i t  is uniaxial. As soon as this interchange symmetry is broken, unidirectional effects 
occur. This is the case in (1 I )  for two non-equivalent magnetic impurities.Of course, 
when we consider the three-impurity problem studied by Levy and Fert [5] we also find 
unidirectional contributions to SQ,,, linear in R I , .  (SII x $) (as shown in [4]). As we 
shall indicate presently such magnetic anisotropic effects are comparable, in magnitude, 
to those predicted by ( 1  1). 

Elsewhere [4] we illustrated the consequences of the relativistic RKKY interaction 
of (1  1) for two spin-polarised Fe and CO atoms respectively using the corresponding 
potential functions given in [9]. We compared the interaction energies 6QTi for the two 
moments parallel to each other and to R I ,  and perpendicular, SQ;+, to R I 2  for Fe and 
CO respectively. As expected the anisotropy energy 6QTi - 6Q;+ (on the scale of 
au) was smaller than the interaction energy 6Qii by a factor of IO'. Moreover it was 
in the range of experimental observation. Interestingly, the anisotropic contributions 
to the interaction energy oscillates and is of long range like the non-relativistic RKKY 
interaction. This implies anisotropic frustration in spin glasses [IO]. These contributions 
are uniaxial in form, however, and consequently unable to explain the purely directional 
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Table 1. The energies of interaction (in mRyd) between a Fe and a CO atom separated by 
I 7 1 2  = 3.071, kF = 0.86 au. Orientational arrangements are shown by the sites 1 and 2 of 
figure I .  

Configuration 6012 

I 2.8050 
I1 2.8054 
111 2.8068 
IV 2.8068 
V 2.8068 

character of the magnetic anisotropy of such systems as demonstrated by several types 
of experiment. These include measurements of shifted hysteresis cycles, N M R  and 
torque measurements [ l l ] .  

The simplest unidirectional anisotropy occurs when we consider the interaction 
between two non-equivalent magnetic impurities. This is exemplified by the results 
shown in table 1, which describe the interaction between an  iron and a cobalt impurity 
separated by a distance 371 au  (kF = 0.86 au) with moments whose orientations are 
specified by the sites 1 and 2 of the five arrangements shown in figure 1 .  Whereas, 
for two identical impurities, the interaction of configuration (I)  only would differ from 
the other four, for this new situation, both arrangements (I) and (11) differ from the 
remaining three. The difference between (TI) and (111) in particular demonstrates a 
unidirectional anisotropy. These interactions again have an  oscillatory long ranged 
dependence on separation 

( I )  

O 4 2  @ 

Figure 1. The five configurations used in the calculations described in the text. The 
calculations involving two atoms only refer to the arrangements specified by sites 1 and 2 
only. x denotes a ‘spin’ perpendicular to the plane in which both R I ~  and R13 lie (into the 
paper). Arrows describes ‘spins’ lying in this plane. ’ /?13 = n/3 .  
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We now go on to discuss three-site interactions on the basis of (9). Following the 
same procedures as in the above cases of two site interactions, we have evaluated (9) 
for a number of ‘spin’ configurations. The arrangements used are shown schematically 
in figure 1. Table 2 shows the corresponding interactions between three iron atoms. 
Two sets of calculations are given appropriate to two different sets of site spacings. 
The differences emphasise the strong spatial separation dependence of these interaction 
energies. The pairwise interactions are an  order of magnitude larger than that of the 
triplets but the anisotropies (differences between energies of different configurations) 
are of roughly the same size. This ‘non- convergence’ may indicate that magnetic 
anisotropy is a many impurity effect. As expected from the formal analysis, the 
pairwise interactions show only uniaxial anisotropy, whereas the three site effects can 
pick out anisotropies unidirectional in nature as shown, for example, by the difference 
between configurations (11) and (111). 

Table 2. The energies of interaction (in mRyd) between three Fe impurities positioned so 
that (a )  Rl2 = 3.071 and R13 = 2.9n, k~ = 0.86 au and ( b )  R12 = 2.9n and Ri3 = 2 . 7 ~ .  
Orientational arrangements are shown in figure 1. 

(4 
I -1.5106 -1.8448 -2.1315 -5.4869 0.1201 

111 -1.5124 -1.8466 -2.1306 -5.4896 0.1178 
IV -1.5124 -1.8448 -2.1306 -5.4878 0.1 178 

I1 -1.5124 -1.8456 -2.1315 -5.4895 0.1 178 

V -1.5124 -1.8448 -2.1306 -5.4878 0.1200 

(h)  
I -2.1294 -2.4375 -2.4086 -6.9755 0.0731 
I1 -2.13 10 -2.4380 -2.4086 -6.9776 0.0737 

IV -2.1310 -2.4375 -2.4085 -6.9770 0.0737 
I11 -2.1310 -2.4387 -2.4085 -6.9782 0.0736 

V -2.1310 -2.4375 -2.4085 -6.9770 0.0729 

In table 3 we show the interactions between two iron and one platinum impurities. 
Platinum was chosen owing to its associated large spin-orbit coupling. The first set 
of results show the various interaction energies. They were obtained by evaluating (9) 
fully. Note that the two site interactions are much larger than those of purely three site 
origin. Moreover, the triplet anisotropy is larger than the pairwise anisotropies as well 
as being unidirectional. Additionally the second and third columns describe a single 
magnetic impurity anisotropy. The second set of results examine the consequence of 
neglecting the spin-orbit coupling associated with platinum. The three-site anisotropy 
is now minute. Finally the third set of results show the effect of neglecting spin-orbit 
coupling associated with the magnetic iron atoms. The three site anisotropy is now 
again fairly large though only a fraction of that from the full calculation. In this limit 
the two-site anisotropies are necessarily zero. 

It should be stressed that these calculations have been performed to illustrate 
the qualitative features of magnetic anisotropies which arise from relativistic electron 
scattering. The spin-polarised impurity potentials have been taken from band structure 
calculations and to that extent reflect real properties of the materials in question. The 
jellium model which we treat, however, was not designed to give a realistic picture of 
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Table 3. The energies of interaction [in mRyd) between two Fe impurities on sites I and 
2 and a Pt site on site 3 of figure 1. Rl2 = 3.0n and R13 = 2.971, kF = 0.86 au. ( a )  Full 
interaction, (b)  platinum site treated non-relativistically (i.e. no spin-orbit coupling), (c) 
iron sites treated non-relativistically. 

Configuration a n F e F e  c ~ ~ ~ ~ 2 ~ ~  G R ~ ~ ~ ~ ~  1 GQ, J Q F e ~ e P t  

(a) 

I - 1.5 106 -0.5490 -0.9490 -3.0086 0.0802 
I1 -1.5124 -0.5490 -0.9477 -3.0091 0.0803 
111 -1.5124 -0.5498 -0.9470 -3.0092 0.0832 
IV -1.5124 -0.5498 -0.9490 -3.01 12 0.0786 
V -1.5124 -0.5498 -0.9490 -3.01 12 0.0861 

( h )  
I -1.5106 -2.2982 -2.6217 -6.4305 0.1 151 
11 - 1.5 124 -2.2982 -2.6208 -6.43 I4 0. I I52 
111 -1.5124 -2.2987 -2.6204 -6.4315 0.1 152 
IV -1.5124 -2.2987 -2.6217 -6.4328 0.1 153 
V -1.5124 -2.2987 -2.6217 -6.4328 0.1 152 

(c) 

I -1.8213 -0.7325 -1.1319 -3.8657 0.0967 
11 -1.8213 -0.7325 -1.1319 -3.8657 0.0967 
111 -1.8213 -0.7325 -1.1319 -3.8657 0.0967 
IV -1.8213 -0.7325 -1.1319 -3.8657 0.0954 
V -1.8213 -0.7325 -1.1319 -3.8657 0.0979 

electrons in actual dilute alloys. Consequently we d o  not attempt to interpret actual 
experiments or compare with other calculations [ 5 ] ,  [ I  I ] ,  [12]. 

In short we have presented a general formalism for the study of the interaction 
between impurities in a metallic host modelled by relativistic jellium. A general rela- 
tivistic multi-site, multi-component RKKY interaction has been found with a transparent 
functional form for the two-site limit. Specific calculations relevant to two and three 
impurities have been carried out. Both uniaxial and unidirectional magnetic anisotropic 
effects appear naturally. It would be illuminating if the full implications arising from 
the anisotropic form of these interactions were to be explored by computer simulation 
studies of spin-glass models. 
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